

CEBRA technology

Windows 95 Device Driver for Plug-n-Play Teletext Generator rev. 2.0 & 2.1

� FILNAVN * stortbogstav * FLETFORMAT �D0017TDC.DOC�

Version 1.02

� SENESTGEMT \@ "åååå-MM-dd" * FLETFORMAT �1997-02-12� � FORFATTER * FLETFORMAT �CFH��
Table of Contents

� INDHOLD \o "1-3" �1. Introduction	� GÅTILKNAP _Toc380384016 � SIDEHENVIS _Toc380384016 �1��

2. Accessing the VxD	� GÅTILKNAP _Toc380384017 � SIDEHENVIS _Toc380384017 �1��

2.1 Opening the VxD	� GÅTILKNAP _Toc380384018 � SIDEHENVIS _Toc380384018 �1��

2.2 Closing the VxD	� GÅTILKNAP _Toc380384019 � SIDEHENVIS _Toc380384019 �1��

2.3 Accessing the VxD	� GÅTILKNAP _Toc380384020 � SIDEHENVIS _Toc380384020 �1��

3. Function Definitions	� GÅTILKNAP _Toc380384021 � SIDEHENVIS _Toc380384021 �2��

3.1 GetDriverVersion_Internal	� GÅTILKNAP _Toc380384022 � SIDEHENVIS _Toc380384022 �3��

3.2 GetDriverVersion	� GÅTILKNAP _Toc380384023 � SIDEHENVIS _Toc380384023 �3��

3.3 Open	� GÅTILKNAP _Toc380384024 � SIDEHENVIS _Toc380384024 �4��

3.4 Close	� GÅTILKNAP _Toc380384025 � SIDEHENVIS _Toc380384025 �5��

3.5 SetConfiguration	� GÅTILKNAP _Toc380384026 � SIDEHENVIS _Toc380384026 �6��

3.6 GetConfiguration	� GÅTILKNAP _Toc380384027 � SIDEHENVIS _Toc380384027 �7��

3.7 Enable	� GÅTILKNAP _Toc380384028 � SIDEHENVIS _Toc380384028 �8��

3.8 Disable	� GÅTILKNAP _Toc380384029 � SIDEHENVIS _Toc380384029 �8��

3.9 PutPackets	� GÅTILKNAP _Toc380384030 � SIDEHENVIS _Toc380384030 �9��

3.10 GetStatus	� GÅTILKNAP _Toc380384031 � SIDEHENVIS _Toc380384031 �10��

3.11 I2CRead	� GÅTILKNAP _Toc380384032 � SIDEHENVIS _Toc380384032 �11��

3.12 I2CWrite	� GÅTILKNAP _Toc380384033 � SIDEHENVIS _Toc380384033 �12��

4. Installation of ttxgen95.386	� GÅTILKNAP _Toc380384034 � SIDEHENVIS _Toc380384034 �12��

��
Introduction

The CEBRA Technology Plug-n-Play Teletext Generator rev. 2.0 & 2.1 is supported in the Microsoft Windows 95 environment by the ttxgen95.386 dynamic VxD, with the VxD ID 0x3B4E. This document describes the API provided by the device driver.

Accessing the VxD

The VxD is accessed using the 32-bit Win32 IOCTL-interface as described in the following sections.

Opening the VxD

The VxD is opened from C/C++ code by the statement:

HANDLE vxd = CreateFile("\\\\.\\ttxgen95.386", 0, 0, 0, CREATE_NEW,	FILE_FLAG_DELETE_ON_CLOSE | FILE_FLAG_OVERLAPPED, 0);

The handle vxd is used afterwards for all references to the VxD. If the returned value for vxd is INVALID_HANDLE_VALUE, an error has occurred, and GetLastError() should be used to get more details.

Closing the VxD

The VxD is closed from C/C++ code by the statement:

CloseHandle(vxd);

CloseHandle() returns TRUE on success, FALSE on error. Use GetLastError() to get more details in case of error. Any reference to vxd is invalid after this function call.

Accessing the VxD

The VxD is accessed from C/C++ code by the statement:

DeviceIoControl(vxd,

	FunctionNumber,

	InputBuffer, InputBufferLength,

	OutputBuffer, OutputBufferLength,

	BytesReturned,

	Overlapped);

DeviceIoControl() returns TRUE on success, FALSE on error. Use GetLastError() to get more details in case of error.

FunctionNumber defines the number of the function to be called. Valid values are specified in the following sections.

InputBuffer points to a structure with input parameters to the function. The layout of the structure depends on the actual function being called as specified in the following sections. InputBufferLength should be set to the size of this structure. If this structure is not needed by a specific function, InputBuffer may be set to 0. In this case, InputBufferLength is ignored.

OutputBuffer points to a structure with output parameters from the function. The layout of the structure depends on the actual function being called as specified in the following sections. OutputBufferLength should be set to the size of this structure.

BytesReturned must always be a valid pointer to a UN32. On return, the UN32 will be set to the size of the structure returned (i.e. OutputBufferLength).

Overlapped must always be a valid pointer to an OVERLAPPED structure. It is used for asynchronous operations.

Function Definitions

This section details the individual functions of the device driver that can be called using the DeviceIoControl() interface. The table below gives an overview of all the available functions.

Function Name�
Can be called�
�
GetDriverVersion_Internal�
Always (internal only)�
�
GetDriverVersion�
Always�
�
Open�
Always�
�
Close�
Only after Open�
�
SetConfiguration�
Only after Open�
�
GetConfiguration�
Only after Open�
�
Enable�
Only after Open�
�
Disable�
Only after Open�
�
PutPackets�
Only after Open�
�
GetStatus�
Only after Open�
�
I2CRead�
Only after Open�
�
I2CWrite�
Only after Open�
�

Every structure pointed to by OutputBuffer will contain a UN32-member called Result that reports the result of the operation. Result can take on the following values:

	0	Success

		Everything went smooth

	1	Parameter Error

		One or more parameters passed to the VxD were invalid, such as an unexpected nul-		pointer or an invalid structure size

	2	Card Not Open

		The card has not been opened and can therefore not be accessed

	3	Card Not Present

		The card detection algorithm failed

	4	Card In Use

		The requested card was already in use

	5	IRQ Allocation Failed

		The VxD failed to allocate the required IRQ

	6	I2C Timeout

		A timeout occurred during the I2C-access

	7	No I2C Acknowledge

		The addressed I2C-chip did not acknowledge the access

	8	Busy

		The driver is already busy with the requested action

	9	Hardware Failure

		The hardware failed in some way

In the case that OutputBuffer is invalid (e.g. 0), BytesReturned will be 0 to indicate that it was not possible to return the real result code. This is an error condition.

GetDriverVersion_Internal

FunctionNumber:	N/A

InputBuffer:		Ignored

InputBufferSize:	Ignored

OutputBuffer:	Ignored

OutputBufferSize:	Ignored

BytesReturned:	0

Overlapped:		Ignored

This function can not be called using DeviceIoControl(). It is used internally by the operating system when CreateFile() is called to determine if the device driver supports the DeviceIoControl-interface.

GetDriverVersion

FunctionNumber:	IOCTL_TTXGEN_GET_DRIVER_VERSION

InputBuffer:		input

InputBufferSize:	sizeof(input)

OutputBuffer:	output

OutputBufferSize:	sizeof(output)

BytesReturned:	sizeof(output)

Overlapped:		Ignored

struct TTXGEN_GetDriverVersion_input

{

 UN32 VersionStringLength;

} input;

struct TTXGEN_GetDriverVersion_output

{

 UN32 Result;

 UN32 Version;

 char VersionString[];

} output;

�
This function returns the version of the driver.

On entry, input.VersionStringLength should be set to the length of the buffer output.VersionString.

On return, output.Version will be set to the version of the driver (e.g. 0x203 for version 2.03) and output.VersionString will contain a version string (e.g. “ttxgen95.386 Plug-n-Play Device Driver ver. 2.03”), including a terminating zero.

Return values (in output.Result):

	Success, Parameter Error

Open

FunctionNumber:	IOCTL_TTXGEN_OPEN

InputBuffer:		input

InputBufferSize:	sizeof(input)

OutputBuffer:	output

OutputBufferSize:	sizeof(output)

BytesReturned:	sizeof(output)

Overlapped:		Ignored

enum FL_Capabilities

{

 CB_TELETEXT_SYSTEM_MASK = 0x00000007,

 CB_TELETEXT_SYSTEM_PAL625_WST = 0x00000000,

 CB_TELETEXT_SYSTEM_NTSC525_NABTS = 0x00000001,

 CB_HAS_INTERNAL_VIDEO = 0x00000008,

 CB_BYPASS_READ = 0x00000010, // Can read status of bypass relay

 CB_EXTERNAL_SYNC = 0x00000020 // Can detect sync of external video 			 // even when running on internal video

};

struct TTXGEN_Open_input

{

 UN32 PnPSerialNumber;

} input;

struct TTXGEN_Open_output

{

 UN32 Result;

 UN32 Capabilities;

 UN32 HWRevision; // 0x200 for rev. 2.00, 0x210 for rev. 2.10

 UN32 PortBase;

 UN32 CardIRQ;

} output;

This function opens the driver. Currently, only one card can be accessed at a time. After opening the driver, it must be configured before it can finally be enabled.

On entry, input.PnPSerialNumber should be set to the serial number of the card to open. The first version of the driver ignores this parameter, since only one card can be opened at a time.

On return, output.Capabilities will be set according to the capabilities of the device driver, using the values from FL_Capabilities. output.HWRevision reflects the hardware revision of the card. output.PortBase will contain the physical I/O port address of the card and output.CardIRQ will contain the number of the physical IRQ line associated with the card. These values are for reference only, the ports and the IRQ line should never be accessed directly.

Return values (in output.Result):

	Success, Parameter Error, Card Not Present, Card In Use, IRQ Allocation Failed, 	Hardware Error

Close

FunctionNumber:	IOCTL_TTXGEN_CLOSE

InputBuffer:		Ignored

InputBufferSize:	Ignored

OutputBuffer:	output

OutputBufferSize:	sizeof(output)

BytesReturned:	sizeof(output)

Overlapped:		Ignored

struct TTXGEN_Close_output

{

 UN32 Result;

} output;

This function closes the driver.

Return values (in output.Result):

	Success, Parameter Error, Card Not Open

�
SetConfiguration

FunctionNumber:	IOCTL_TTXGEN_SET_CONFIGURATION

InputBuffer:		input

InputBufferSize:	sizeof(input)

OutputBuffer:	output

OutputBufferSize:	sizeof(output)

BytesReturned:	sizeof(output)

Overlapped:		Ignored

enum FL_OpMode

{

 OM_VBIMODE_MASK = 0x00000001,

 OM_VBI_ONLY = 0x00000000,

 OM_FULL_FIELD = 0x00000001,

 OM_VIDEO_SOURCE_MASK = 0x00000002,

 OM_VIDEO_SOURCE_EXT = 0x00000000,

 OM_VIDEO_SOURCE_INT = 0x00000002,

 OM_INSERTER_MASK = 0x0000000C,

 OM_INSERTER = 0x00000000,

 OM_GENERATOR = 0x00000004,

 OM_GENERATOR_SHAPED = 0x00000008,

 OM_BYPASS = 0x00000010

};

struct TTXGEN_SetConfiguration_input

{

 UN32 OpMode;

 UN32 TTXVBIMaskOdd;

 UN32 TTXVBIMaskEven;

 UN32 AUXVBIMaskOdd;

 UN32 AUXVBIMaskEven;

 UN32 BlankVBIMaskOdd;

 UN32 BlankVBIMaskEven;

} input;

struct TTXGEN_SetConfiguration_output

{

 UN32 Result;

} output;

This function configures the driver.

On entry, input.OpMode should be set using the values from the FL_OpMode enum. input.TTXVBIMaskOdd and input.TTXVBIMaskEven should have ones in the positions corresponding to the VBI lines where teletext should be inserted, as shown in the table below.

Similarly, input.AUXVBIMaskOdd and input.AUXVBIMaskEven should have ones in the positions corresponding to the VBI lines where video from the auxillary input should be inserted.

Finally, input.BlankVBIMaskOdd and input.BlankVBIMaskEven should have ones in the positions corresponding to the VBI lines where blank (black) lines should be inserted.

�

xVBIMaskOdd/Even�
VBI Line (Odd Field)�
VBI Line (Even Field)�
�
0x00000001�
6�
318�
�
0x00000002�
7�
319�
�
0x00000004�
8�
320�
�
0x00000008�
9�
321�
�
0x00000010�
10�
322�
�
0x00000020�
11�
323�
�
0x00000040�
12�
324�
�
0x00000080�
13�
325�
�
0x00000100�
14�
326�
�
0x00000200�
15�
327�
�
0x00000400�
16�
328�
�
0x00000800�
17�
329�
�
0x00001000�
18�
330�
�
0x00002000�
19�
331�
�
0x00004000�
20�
332�
�
0x00008000�
21�
333�
�
0x00010000�
22�
334�
�
0x00020000�
-�
335�
�

Return values (in output.Result):

	Success, Parameter Error, Card Not Open

GetConfiguration

FunctionNumber:	IOCTL_TTXGEN_GET_CONFIGURATION

InputBuffer:		Ignored

InputBufferSize:	Ignored

OutputBuffer:	output

OutputBufferSize:	sizeof(output)

BytesReturned:	sizeof(output)

Overlapped:		Ignored

struct TTXGEN_GetConfiguration_output

{

 UN32 Result;

 UN32 OpMode;

 UN32 TTXVBIMaskOdd;

 UN32 TTXVBIMaskEven;

 UN32 AUXVBIMaskOdd;

 UN32 AUXVBIMaskEven;

 UN32 BlankVBIMaskOdd;

 UN32 BlankVBIMaskEven;

} output;

This function retrieves the current configuration of the driver.

On return, all fields in output are set to the values set in the last call to SetConfiguration. See the description of SetConfiguration on how to interprete these values.

Return values (in output.Result):

	Success, Parameter Error, Card Not Open

Enable

FunctionNumber:	IOCTL_TTXGEN_ENABLE

InputBuffer:		Ignored

InputBufferSize:	Ignored

OutputBuffer:	output

OutputBufferSize:	sizeof(output)

BytesReturned:	sizeof(output)

Overlapped:		Ignored

struct TTXGEN_Enable_output

{

 UN32 Result;

} output;

This function enables the insertion of teletext.

Return values (in output.Result):

	Success, Parameter Error, Card Not Open

Disable

FunctionNumber:	IOCTL_TTXGEN_DISABLE

InputBuffer:		Ignored

InputBufferSize:	Ignored

OutputBuffer:	output

OutputBufferSize:	sizeof(output)

BytesReturned:	sizeof(output)

Overlapped:		Ignored

struct TTXGEN_Disable_output

{

 UN32 Result;

} input;

This function disables the insertion of teletext, causing the selected VBI lines to be blanked instead.

Return values (in output.Result):

	Success, Parameter Error, Card Not Open

�
PutPackets

FunctionNumber:	IOCTL_TTXGEN_PUT_PACKETS

InputBuffer:		input

InputBufferSize:	sizeof(input)

OutputBuffer:	output

OutputBufferSize:	sizeof(output)

BytesReturned:	sizeof(output)

Overlapped:		overlapped

struct TTXGEN_PutPackets_input

{

 UN32 OddField;

 UN32 PacketCount;

 char Packets[];

} input;

struct TTXGEN_PutPackets_output

{

 UN32 Result;

} output;

This function transfers packets with teletext to the driver. Each packet must be 45 bytes in length, including two bytes of clock run-in and one byte of framing code.

On entry, input.OddField must be 1 if the teletext packets are to be inserted in the odd field, and 0 if they should be inserted in the even field. input.PacketCount specifies how many packets follow, starting at input.Packets. The number must be equal to the number of lines selected for insertion of teletext in the specific field.

overlapped is a pointer to an OVERLAPPED structure used for asynchronous signalling.

The function will return immediately with an error. Calling GetLastError() afterwards will return ERROR_IO_PENDING to indicate the asynchronous nature of the operation. The calling thread can then block on the overlapped structure, using GetOverlappedResult(). When the driver has used the packets, the blocked thread will be released again.

The following code fragment shows how asynchronous operation may be implemented:

�
OVERLAPPED overlapped = { 0, 0, 0, 0, 0 };

overlapped.hEvent = CreateEvent(0, TRUE, 0, 0);

if (overlapped.hEvent == 0)

{ /* Event creation failed! */

 ...

}

if (!DeviceIoControl(vxd, 8, input, sizeof(input), output, sizeof(output), 	&bytesreturned, overlapped))

{

 if (GetLastError() == ERROR_IO_PENDING)

 { /* Asynchronous call, not complete yet */

 /* Wait for operation to complete - current thread is suspended */

 GetOverlappedResult(vxd, overlapped, &bytesreturned, TRUE);

 /* Asynchronous operation has completed */

 }

 else

 { /* Unexpected error */

 ...

 }

}

else

{ /* DeviceIoControl returned synchronously */

 /* output.Result contains return code */

 ...

}

Return values (in output.Result, only valid if operation completed synchronously):

	Success, Parameter Error, Card Not Open, Busy

GetStatus

FunctionNumber:	IOCTL_TTXGEN_GET_STATUS

InputBuffer:		Ignored

InputBufferSize:	Ignored

OutputBuffer:	output

OutputBufferSize:	sizeof(output)

BytesReturned:	sizeof(output)

Overlapped:		Ignored

enum FL_Status

{

 S_InSync = 0x00000001,

 S_SyncLost = 0x00000002, // Cleared when read

 S_BufferUnderflow = 0x00000004, // Cleared when read

 S_CurrentFieldOdd = 0x00000008,

 S_Enabled = 0x00000010,

 S_Bypassing = 0x00000020, // Only valid for HW revision 2.1 and higher

 S_ExtVideo = 0x00000040 // Only valid for HW revision 2.1 and higher

};

�
struct TTXGEN_GetStatus_output

{

 UN32 Result;

 UN32 Status;

 UN32 IRQCount;

 UN32 PacketCount;

 UN32 BlankLineCount;

} output;

This function retrieves the current status of the driver.

On return, output.Status contains various flags from the FL_Status enum. A few rules must be observed when interpreting the S_xxx flags: the S_BufferUnderflow, S_CurrentFieldOdd and S_ExtVideo flags are only valid when S_InSync is set.

output.IRQCount contains the total number of interrupts serviced since the driver was started. output.PacketCount contains the total number of teletext packets inserted since the driver was started. output.BlankLineCount contains the total number of blank lines inserted (due to the driver being disabled or lack of teletext packets) since the driver was started.

Return values (in output.Result):

	Success, Parameter Error, Card Not Open

I2CRead

FunctionNumber:	IOCTL_TTXGEN_I2C_READ

InputBuffer:		input

InputBufferSize:	sizeof(input)

OutputBuffer:	output

OutputBufferSize:	sizeof(output)

BytesReturned:	sizeof(output)

Overlapped:		Ignored

struct TTXGEN_I2CRead_input

{

 UN32 I2CAddress;

 UN32 ByteCount;

} input;

struct TTXGEN_I2CRead_output

{

 UN32 Result;

 char Buffer[];

} output;

This function performs an I2C-read operation from a specified device.

On entry, input.I2CAddress should be set to the I2C-address of the device to read from. input.ByteCount should be set to the number of bytes to read.

On return, output.Buffer contains the data read.

Return values (in output.Result):

	Success, Parameter Error, Card Not Open, I2C Timeout, No I2C Acknowledge

�
I2CWrite

FunctionNumber:	IOCTL_TTXGEN_I2C_WRITE

InputBuffer:		input

InputBufferSize:	sizeof(input)

OutputBuffer:	output

OutputBufferSize:	sizeof(output)

BytesReturned:	sizeof(output)

Overlapped:		Ignored

struct TTXGEN_I2CWrite_input

{

 UN32 I2CAddress;

 UN32 ByteCount;

 char Buffer[];

} input;

struct TTXGEN_I2CWrite_output

{

 UN32 Result;

} output;

This function performs an I2C-write operation to a specified device.

On entry, input.I2CAddress should be set to the I2C-address of the device to write to, input.ByteCount should be set to the number of bytes to write, and input.Buffer should contain the data to write.

Return values (in output.Result):

	Success, Parameter Error, Card Not Open, I2C Timeout, No I2C Acknowledge

Installation of ttxgen95.386

ttxgen95.386 is a dynamically loadable VxD, and is loaded automatically by Windows 95 when installing the CEBRA Technology Plug-n-Play Teletext Generator rev. 2.0 or 2.1 in a PC and inserting an installation disk with the corresponding .inf file.

�SIDE �

� TITEL *
